

Dynamic Water Technologies

MARINA HEIGHTS TEMPE, AZ 3-6-19

GEORGE CHAC

NATURALLY TREATING WATER

SCOPE OF REPORT

- The purpose of this report is to show the efficacy of Dynamic Water's UET reactor as an alternative water treatment to traditional chemical treatment at Marina Heights, Tempe AZ.
- The study will quantify efficacy using the following:
 - Biocontamination level
 - Water usage and savings
 - Corrosion rate
 - Approach temperatures

Marina Heights

- Cooling System: (2) BAC S3E-1020-07P 530 ton CTs
- UET System: (1) 4x4 UET Reactor Systems
- DWT Start Date: August 31st, 2017

Power Supply Upgrade

- On the first week of January, DWT upgraded the power supplies on the 4x4 Reactor Skid. This has allowed us to do the following:
 - Increase energy supplied for water treatment as needed
 - Create redundancies in case a power supply should malfunction
 - Run the power supplies at less capacity to avoid malfunction
- Increasing energy can have the following effects
 - Push water LSI lower, to form less scale and make the water more mineral deprived
 - Generate more residual chlorine

Bio-Contamination Level

Date	Reading
5/7/18	1,000 - 10,000 CFU/mL
6/12/18	100 - 1,000 CFU/mL (brine installed)
7/18/18	10 - 100 CFU/mL (NaOCl installed, 3x/week)
7/26/18	100 - 1,000 CFU/mL
8/6/18	0 - 10 CFU/mL (NaOCl reduced to 1x/week)
8/21/18 (Transwestern Datapoint)	100 – 1,000 CFU/mL
9/18/18	0 – 10 CFU/mL
10/2/18	100 – 1,000 CFU/mL
10/24/18	1,000 – 10,000 CFU/mL
12/6/18 (Transwestern Datapoint)	1,000 – 10,000 CFU/mL
12/13/18	1,000 – 10,000 CFU/mL
1/3/19 (Transwestern Datapoint)	100 – 1,000 CFU/mL (NaOCl dosing disabled)
1/31/19	1,000 – 10,000 CFU/mL
2/28/19	0 – 10 CFU/mL

CTI/ASHRAE requires bio-contamination levels to be <10,000 CFU/mL

Oxidation Reduction vs. Time

Water Savings

Original Proposal Estimate	
Previous Annual Water Usage (2017):	5,241,000 gallons
Projected Annual Water Usage with DWT:	3,819,000 gallons
Projected Annual Water Savings:	1,422,000 (27% makeup, 81% blowdown)
Annual Savings from Water:	\$8,532 (at \$6.00/1000 gallons)
Annual Chemical Savings:	\$20,000

One Year of Operation	Data Collected from 4/4/18 to 3/6/19 extrapolated
Annual Water Usage:	3,762,956 gallons (estimated)
Projected Usage with Pre-DWT Operation:	5,020,838 gallons (estimated)
Savings:	1,257,882 gallons (25.1% makeup, 75.2% blowdown)
Annual Savings from Water:	\$7,547 (at \$6.00/1000 gallons)
Annual Chemical Savings:	\$20,000

Corrator rates Mils/year vs. Date

• Copper • Mild Steel

Approach Temperatures

Chillers were cleaned early June

Chiller 1 Borescope Images – February 2019

Approach Temperatures

Chillers were cleaned early June

Chiller 2 Borescope Images – February 2019

DWT Halo-Gen Chlorine Generator Prototype

- New DWT Technology that produces chlorine using UET science and application
- Can treat up to 5GPM per tube, generating excess of 8.0 ppm measurable free chlorine.
- 3 skids can treat a volume of 10,000 gallons for a residual of 0.5 ppm chlorine at all times
- Standalone, separate technology. Does not require UET water treatment reactors.

DYNAMIC UNACTOR DYNAMIC DYNAMI

NATURALLY TREATING WATER

Neil Ginsberg – Principal and Co-Founder <u>neilg@dynamicwater.com</u>

George Chac – Engineering Project Manager georgec@dynamicwater.com

> Office 480-289-2401 www.dynamicwater.com